

CARBON RECYCLE HYDROGEN CARRIER SYSTEM USING NUCLEAR POWER

Yukitaka Kato

Research Laboratory for Nuclear Reactors Tokyo Institute of Technology

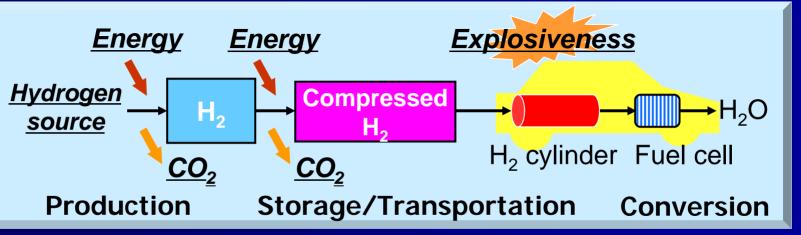
No. of Paper IAEA-CN-152-31 17th April, 2007

International Conference on Non-Electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications

16 – 19 April 2007, JAEA, Oarai, Japan

Organized by the International Atomic Energy Agency; In co-operation with the OECD Nuclear Energy Agency and the International Desalination Association; Hosted by the Government of Japan through the Japan Atomic Energy Agency

Contents


Introduction

- H₂ supply for fuel cell vehicle
 - Non-equilibrium Technologies for hydrogen productions
- Carbon recycle hydrogen carrier system
 - Experiment
 - Evaluation for the carrier system with HTGR
- Synergy of bio-mass and nuclear for H₂
 Conclusions

Hydrogen supply for fuel cell vehicles

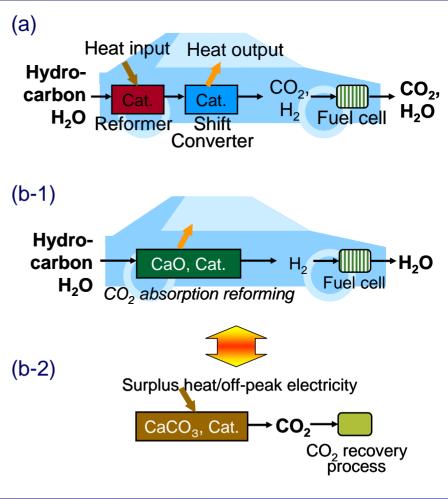
Hydrogen as an energy carrier

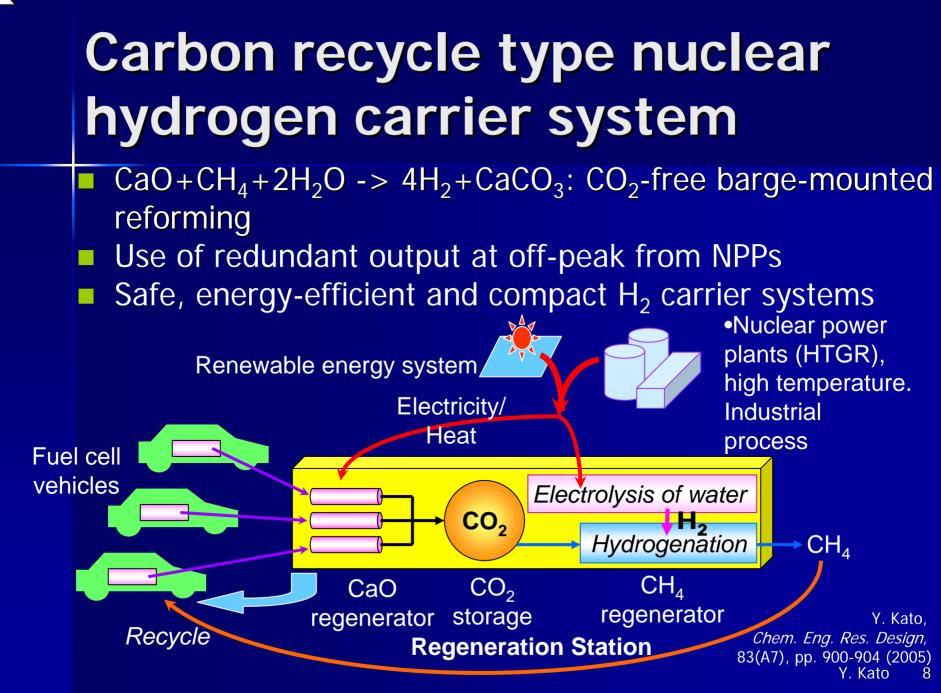
- Hydrogen(H₂) is vital as a non-electricity energy carrier
- H₂ is a promising energy source for vehicles
 - Fuel for fuel cells
 - Liquefaction of tar-sand, crude-oil, coal and bio-mass. Hydro-cracking: $C_nH_m + nH_2 \rightarrow nCH_4$
- Issues for H₂ system: Production energy and delivery
 - Consistency from production to use

Carbon recycle hydrogen carrier system

Regenerative Reforming -Use of chemical absorption-

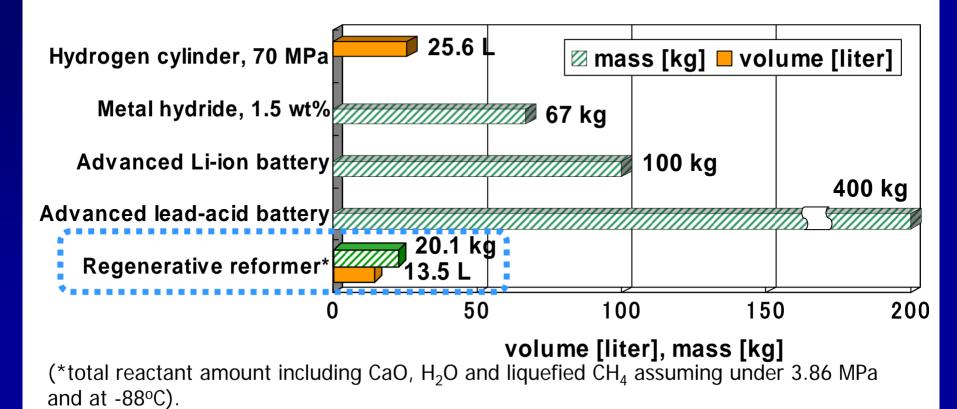
Fuel reforming for methane $-CH_4+H_2O \leftrightarrow 3H_2+CO_1$ $\Delta H^{\circ}_{1} = +205.6 \text{ kJ/mol}$ $-CO+H_2O \leftrightarrow H_2 + CO_2$ $\Delta H_2^{\circ} = -41.1 \text{kJ/mol}$ CaO carbonation $-CaO(s)+CO_2(g)\leftrightarrow CaCO_3(s)$, $\Delta H_2 = -178.3 \text{ kJ/mol}$ Regenerative reforming $(CO_2 absorption reforming, self-heating)$ $-CaO(s)+CH_4(g)+2H_2O(g)\leftrightarrow 4H_2(g)+CaCO_3(s),$ $\Delta H_{4}^{\circ} = -13.3$ kJ/mol


CO₂ zero-emission FC vehicle


Regenerative reforming

- CO₂ recoverable, self heating, and simple reforming system
- thermally regenerative
- CO₂ zero-emission FC vehicle

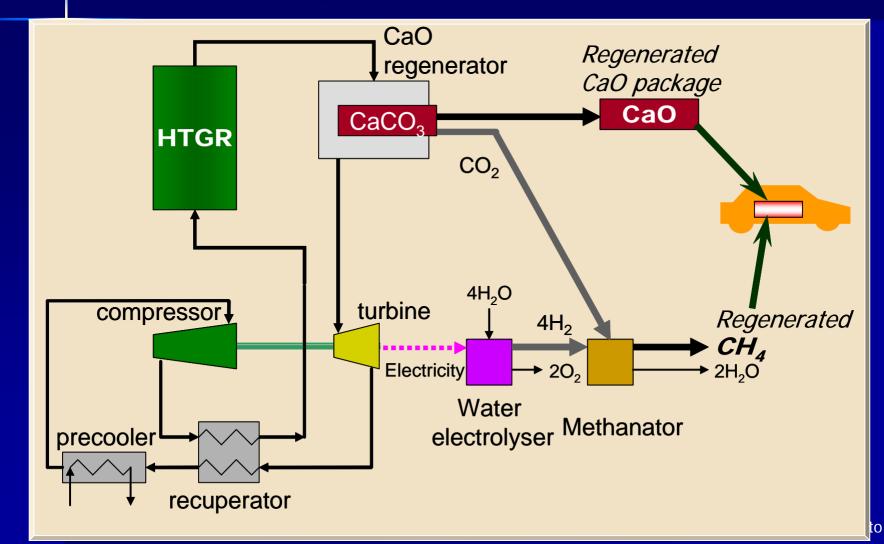
Safety H₂ carrier system under low-pressure and high-density


Figure 1. Concept of a zero CO_2 emission FC vehicle using a thermally regenerative reformer; (a) conventional reforming, (b-1,2) proposed thermally regenerative reforming, (b-1) reforming mode, (b-2) regenerating and CO_2 recovering mode

Comparison between H₂ **systems**

Table: Scale of energy storage facilities for 100 km mileage, 14.7 kWh, 500 mol- H_2 (= Petroleum of 4 L, 2.8 kg)

Y. Kato 9

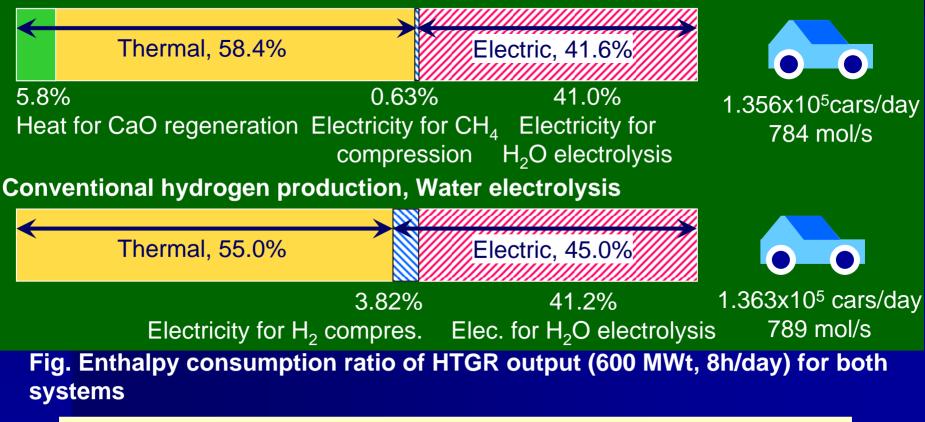

Merits of Carbon recycle type H₂ carrier system

 $CaO(s) + CH_4(g) + 2H_2O(g) \leftrightarrow 4H_2(g) + CaCO_3(s),$ $\Delta H_4^{\circ} = -13.3 \text{ kJ/mol}$

- CO₂ removing induces the reforming state into non-equilibrium
- Reaction enhancement by non-equilibrium
 - Enhancement of H₂ production yield
 - Reduction of reforming temperature
- Self heating
- CO₂ recoverable
- Elimination of compression work and explosion risk for hydrogen supply

The hydrogen carrier system with HTGR

Combination of the H₂ carrier system and HTGR



The H₂ carrier vs. H₂O electrolysis (2) HTGR system (GTHTR300)

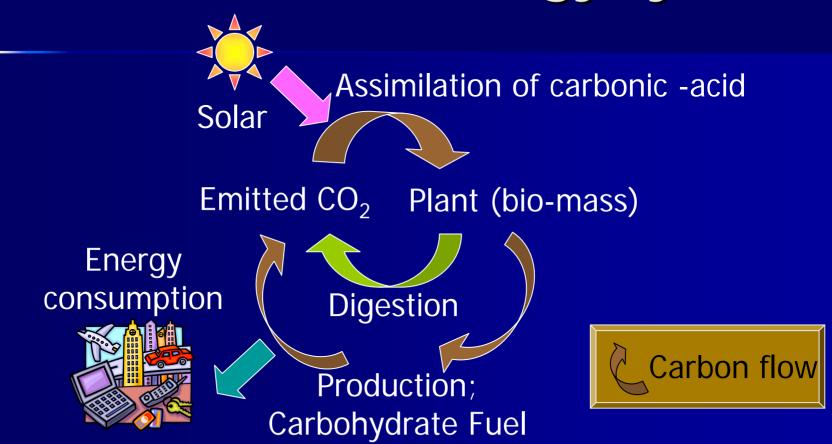
		Propo	osed H ₂	Conventio	onal water
		carrier	system	electrolys	is system
HTGR thermal power ¹		600 MWt			
Outlet coolant temperature from HTGR		850 °C			
HTGR operation duration for hydrogen processes		8 h/day			
Inlet/o	utlet coolant temperature for CaO	850 / 835	O ^o	-	
Inlet/o	utlet coolant temperature for gas-turbine	835 / 587	Oo	850 / 587	O°
Power	input for CaO regeneration	34.8	MWt	-	
Plant p	power input for gas-turbine power	565.2	MWt	600.0	MWt
Gas-tu	Irbine power efficiency ²	44.3	%	45.0	%
Water electrolysis efficiency ($\Box H$ base) ³		90 %			
Comp	ression pressure	175	bar-CH ₄	700	bar-H ₂
Power	for H2 electrolysis	245.8	MWe	247.1	MWe
Power	for compression	3.8	MWe-CH ₄	22.9	MWe-H ₂
H2 pro	duction/equivalent	2.26E+07	H ₂ -mol equ	2.27E+07	H ₂ -mol
Numb	er of FC vehicles for 100 km mileage each ⁴	4.52E+04	-	4.54E+04	-
Based on GTHTR 300, (Kunitomi et al, JAESJ, 1(4), 352(2002))					

Enthalpy balance of the H₂ carrier & H₂O electrolysis systems based on HTGR

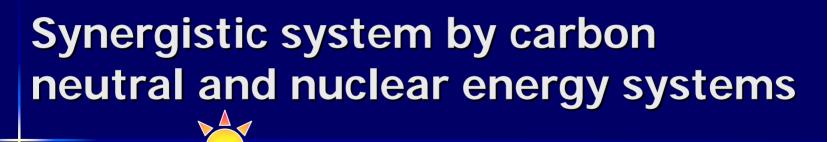
Carbon recycle hydrogen carrier system

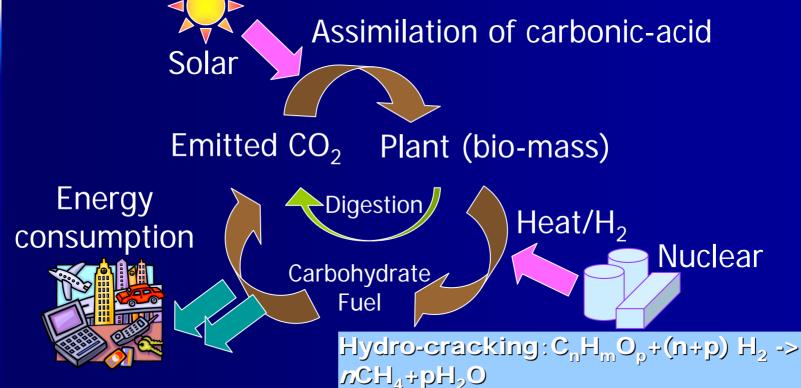
The carrier system : Reduction of compression pressure & work and transportation risk with consisting the same efficiency of conventional H₂ system > Safe and compact H₂ carrier system

Application of the regenerative reforming to ethanol and biomass


■ Fuel reforming for Ethanol $-C_2H_5OH(I) + 3H_2O(I) \rightarrow 6H_2(g) + 2CO_2(g)$ $\Delta H_5^{\circ} = + 341.7 \text{ kJ/mol}$

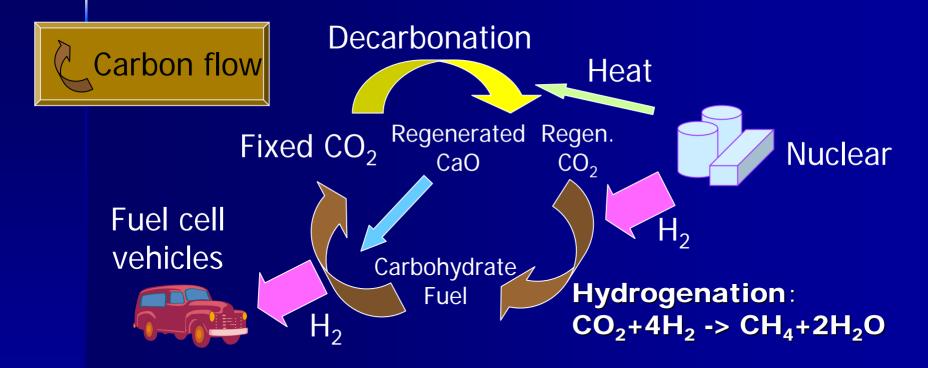
CaO carbonation


- $-CaO(s)+CO_{2}(g)\leftrightarrow CaCO_{3}(s),$ $\Delta \mathcal{H}_{2}^{2}=-178.3 \text{ kJ/mol}$
- Regenerative reforming (CO₂ absorption reforming, self-heating) - C₂H₅OH(I) + 3H₂O(I) + 2CaO(s) → 6H₂(g) + 2CaCO₃(s) $\Delta H_6^{\circ} = -9.13$ kJ/mol


Synergy of bio-mass and nuclear for H₂ supply

Carbon neutral energy system

Forests and farms maintain air-borne CO₂ at constant by recycling in the carbon neutral cycle, while converting solar power to energy



Increasing carbohydrate fuels by synergistic combination of carbon neutral and nuclear H₂ systems
 CO₂and H₂ are recycled in the synergistic neutral system

18

RLNR, Tokyo Institute of Technology

Carbon Recycle Hydrogen Carrier System Using Nuclear Power

Carbon as H₂ carrier media is recycled in the system by nuclear power

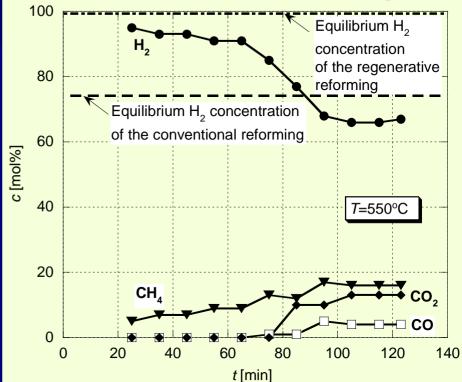
Carbon is free from the restriction of bio-mass quantity

19

Conclusions

- Carbon recycle type H₂ carrier system has possibility to realize efficient H₂ transportation by reduction of storage compression work, storage volume and fuel explosion risk.
- Total energy consumption is similar with conventional H₂O electrolysis system.
- The carrier system have good compatibility with HTGR, and can utilize the top temperature part in the primary loop of HTGR
- Synergistic systems of carbon neutral and nuclear energy systems
- Choice of hydrogen source is limited by numbers of FC vehicles
 - First generation: Synergy of biomass and nuclear for hydrogen economy
 - Next generation: Carbon recycle H₂ carrier system using nuclear power

Thanks!


E-mail: yukitaka@nr.titech.ac.jp
 URL: http://www.nr.titech.ac.jp/~yukitaka/

CO₂ absorption reforming

- During the initial 60 min,
 hydrogen production was higher than the equilibrium concentration of conventional reforming.
- Charged CaO absorbed well CO₂ by carbonation. CO₂ < 1%
- CO was removed, <1%</p>
- Low-temperature reforming (conventional reform. temp. > 700°C)

Al₂O₃×Ni cat+CaO

Fig. Temporal change of effluent composition of the regenerative reformer at 550°C

